24 research outputs found

    VALIDATION OF A MODEL OF SENSORIMOTOR INTEGRATION WITH CLINICAL BENEFITS

    Get PDF
    Healthy sensorimotor integration – or how our touch influences our movements – is critical to efficiently interact with our environment. Yet, many aspects of this process are still poorly understood. Importantly, several movement disorders are often considered as originating from purely motor impairments, while a sensory origin could also lead to a similar set of symptoms. To alleviate these issues, we hereby propose a novel biologically-based model of the sensorimotor loop, known as the SMILE model. After describing both the functional, and the corresponding neuroanatomical versions of the SMILE, we tested several aspects of its motor component through functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS). Both experimental studies resulted in coherent outcomes with respect to the SMILE predictions, but they also provided novel scientific outcomes about such broad topics as the sub-phases of motor imagery, the neural processing of bodily representations, or the extend of the role of the extrastriate body area. In the final sections of this manuscript, we describe some potential clinical application of the SMILE. The first one presents the identification of plausible neuroanatomical origins for focal hand dystonia, a yet poorly understood sensorimotor disorder. The last chapter then covers possible improvements on brain-machine interfaces, driven by a better understanding of the sensorimotor system. -- La façon dont votre sens du toucher et vos mouvements interagissent est connue sous le nom d’intĂ©gration sensorimotrice. Ce procĂ©dĂ© est essentiel pour une interaction normale avec tout ce qui nous entoure. Cependant, plusieurs aspects de ce processus sont encore mĂ©connus. Plus important encore, l’origine de certaines dĂ©ficiences motrices encore trop peu comprises sont parfois considĂ©rĂ©es comme purement motrice, alors qu’une origine sensorielle pourrait mener Ă  un mĂȘme ensemble de symptĂŽmes. Afin d’amĂ©liorer cette situation, nous proposons ici un nouveau modĂšle d’intĂ©gration sensorimotrice, dĂ©nommĂ© « SMILE », basĂ© sur les connaissances de neurobiologie actuelles. Dans ce manuscrit, nous commençons par dĂ©crire les caractĂ©ristiques fonctionnelles et neuroanatomiques du SMILE. Plusieurs expĂ©riences sont ensuite effectuĂ©es, via l’imagerie par rĂ©sonance magnĂ©tique fonctionnelle (IRMf), et la stimulation magnĂ©tique transcranienne (SMT), afin de tester diffĂ©rents aspects de la composante motrice du SMILE. Si les rĂ©sultats de ces expĂ©riences corroborent les prĂ©dictions du SMILE, elles ont aussi mis en Ă©vidences d’autres rĂ©sultats scientifiques intĂ©ressants et novateurs, dans des domaines aussi divers que les sous-phases de l’imagination motrice, les processus cĂ©rĂ©braux liĂ©s aux reprĂ©sentations corporelles, ou encore l’extension du rĂŽle de l’extrastriate body area. Dans les derniĂšres parties de ce manuscrit, nous dĂ©voilons quelques applications cliniques potentielles de notre modĂšle. Nous utilisons le SMILE afin de proposer deux origines cĂ©rĂ©brales plausibles de la dystonie focale de la main. Le dernier chapitre prĂ©sente comment certaines technologies existantes, telles que les interfaces cerveaux-machines, pourraient bĂ©nĂ©ficier d’une meilleure comprĂ©hension du systĂšme sensorimoteur

    Biomimetic rehabilitation engineering: the importance of somatosensory feedback for brain-machine interfaces.

    Get PDF
    Brain-machine interfaces (BMIs) re-establish communication channels between the nervous system and an external device. The use of BMI technology has generated significant developments in rehabilitative medicine, promising new ways to restore lost sensory-motor functions. However and despite high-caliber basic research, only a few prototypes have successfully left the laboratory and are currently home-deployed. The failure of this laboratory-to-user transfer likely relates to the absence of BMI solutions for providing naturalistic feedback about the consequences of the BMI's actions. To overcome this limitation, nowadays cutting-edge BMI advances are guided by the principle of biomimicry; i.e. the artificial reproduction of normal neural mechanisms. Here, we focus on the importance of somatosensory feedback in BMIs devoted to reproducing movements with the goal of serving as a reference framework for future research on innovative rehabilitation procedures. First, we address the correspondence between users' needs and BMI solutions. Then, we describe the main features of invasive and non-invasive BMIs, including their degree of biomimicry and respective advantages and drawbacks. Furthermore, we explore the prevalent approaches for providing quasi-natural sensory feedback in BMI settings. Finally, we cover special situations that can promote biomimicry and we present the future directions in basic research and clinical applications. The continued incorporation of biomimetic features into the design of BMIs will surely serve to further ameliorate the realism of BMIs, as well as tremendously improve their actuation, acceptance, and use

    Body Context and Posture Affect Mental Imagery of Hands

    Get PDF
    Different visual stimuli have been shown to recruit different mental imagery strategies. However the role of specific visual stimuli properties related to body context and posture in mental imagery is still under debate. Aiming to dissociate the behavioural correlates of mental processing of visual stimuli characterized by different body context, in the present study we investigated whether the mental rotation of stimuli showing either hands as attached to a body (hands-on-body) or not (hands-only), would be based on different mechanisms. We further examined the effects of postural changes on the mental rotation of both stimuli. Thirty healthy volunteers verbally judged the laterality of rotated hands-only and hands-on-body stimuli presented from the dorsum- or the palm-view, while positioning their hands on their knees (front postural condition) or behind their back (back postural condition). Mental rotation of hands-only, but not of hands-on-body, was modulated by the stimulus view and orientation. Additionally, only the hands-only stimuli were mentally rotated at different speeds according to the postural conditions. This indicates that different stimulus-related mechanisms are recruited in mental rotation by changing the bodily context in which a particular body part is presented. The present data suggest that, with respect to hands-only, mental rotation of hands-on-body is less dependent on biomechanical constraints and proprioceptive input. We interpret our results as evidence for preferential processing of visual- rather than kinesthetic-based mechanisms during mental transformation of hands-on-body and hands-only, respectively

    Differential neural encoding of sensorimotor and visual body representations

    No full text
    Sensorimotor processing specifically impacts mental body representations. In particular, deteriorated somatosensory input (as after complete spinal cord injury) increases the relative weight of visual aspects of body parts’ representations, leading to aberrancies in how images of body parts are mentally manipulated (e.g. mental rotation). This suggests that a sensorimotor or visual reference frame, respectively, can be relatively dominant in local (hands) versus global (full-body) bodily representations. On this basis, we hypothesized that the recruitment of a specific reference frame could be reflected in the activation of sensorimotor versus visual brain networks. To this aim, we directly compared the brain activity associated with mental rotation of hands versus full-bodies. Mental rotation of hands recruited more strongly the supplementary motor area, premotor cortex, and secondary somatosensory cortex. Conversely, mental rotation of full-bodies determined stronger activity in temporo-occipital regions, including the functionally-localized extrastriate body area. These results support that (1) sensorimotor and visual frames of reference are used to represent the body, (2) two distinct brain networks encode local or global bodily representations, and (3) the extrastriate body area is a multimodal region involved in body processing both at the perceptual and representational level.ISSN:2045-232

    Hand posture affects mental rotation of hands-only but not hands-on-body stimuli.

    No full text
    <p>The posture-related difference of RTs varies between stimuli. Faster responses were found in the front postural condition with respect to the back postural condition for the mental rotation of hands-only stimuli. No differences due to postural changes were found in the mental rotation of hands-on-body stimuli. Error bars represent standard errors.</p

    Experimental stimuli.

    No full text
    <p>The hands-only (hands-only) stimuli represented one hand from the dorsum- and the palm-view. The hands-on-body (hands-on-body) stimuli represented a human body with one hand darker than the other, shown from the dorsum- and the palm-view. All stimuli were rotated in four orientations. The overall configuration of the hands was very similar between the hands-only and hands-on-body stimuli.</p
    corecore